DPP - 3 (WEP)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/75

Video Solution on YouTube:- https://youtu.be/AVqpDrsoRSo

Written Solutionon Website:- https://physicsaholics.com/note/notesDetalis/77

Q 1. Figure shows a plot of potential energy function $U(x)=k x^{2}$ where $x=$ displacement and $\mathrm{k}=$ constant. Identify the correct conservative force function $\mathrm{F}(\mathrm{x})$

(a)

$\mathrm{F}(\mathrm{x})$
(b)

(d)

Q 2. In the Figure, the bali A is released from rest when the spring is at its natural length. For the block B, of mass M to leave contact with the ground at some stage, the minimum mass of A must be:

(a) 2 M
(b) M
(c) $\mathrm{M} / 2$
(d) A function of M and the force constant of the spring.

Q 3. Which of the following quantities is/are frame dependent?
(a) Kinetic energy
(b) Work done by a force on a particle
(c) Potential energy
(d) None of these

Q 4. One of the forces acting on a particle is conservative then which of the following statement(s) are true about this conservative force
(a) Its work is zero when the particle moves exactly once around any closed path.
(b) Its work equals the change in the kinetic energy of the particle
(c) Then that particular force must be constant.
(d) Its work depends on the end points of the motion, not on the path between.

Q 5. A block of mass 5 kg is released from rest when compression in spring is 2 m . Block is not attached with the spring and natural length of the spring is 4 m . Maximum height of block from ground is: $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) 5.5 m
(b) 4.5 m
(c) 6 m
(d) 7.5 m

Q 6. The diagram given shows how the interaction foree (conservative) between two particles A and B is related to the distance between them varies from x_{1} to x_{4}. Then:

(a) potential energy of the system increases from x_{1} to x_{2}.
(b) potential energy of the system increases from x_{2} to x_{3}.
(c) potential energy of the system increases from x_{3} to x_{4}.
(d) KE. increases from x_{1} to x_{2} and decreases from x_{2} to x_{3}.

Q 7 Two blocks, of masses M and 2M, are connected to a light spring of spring constant K that has one end fixed, as shown in figure. The horizontal surface and the pulley are frictionless. The blocks are released from rest when the spring is non deformed. The string is light.

(a) Maximum extension in the spring is $\frac{4 \boldsymbol{M g}}{\boldsymbol{K}}$.
(b) Maximum kinetic energy of the system is $\frac{\mathbf{2} \boldsymbol{M}^{2} g^{2}}{K}$
(c) Maximum energy stored in the spring is four times that of maximum kinetic energy of the system.
(d) When kinetic energy of system is maximum, energy stored in spring is $\frac{4 M^{2} g^{2}}{K}$

Q 8. A particle is released from the top of two inclined smooth surfaces of height ' h ' each. The angle of inclination of the two planes is 30° and 60° respectively. Let K_{1} and K_{2} be the kinetic energies of the particle at the bottom of the plane in two cases. Then
(a) $K_{1}=K_{2}$
(b) $K_{1}>K_{2}$
(c) $K_{1}<K_{2}$
(d) data insufficient

Q 9. A body of mass 2 kg is moved from a point A to a point B by an external agent in a conservative force field. If the velocity of the body at the points A and B are $5 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ respectively and the work done by the external agent is -10 J , then the change in potential energy between points A and B is
(a) 6 J
(b) 36
(c) 16 J
(d) none of these

Q 10. A system consists of two cubes of masses m_{1} and m_{2} respectively connected by a spring of force constant k. The force (F) that should be applied to the upper cube for which the lower one just lifts after the force is removed is

(a) $\mathrm{m}_{1} \mathrm{~g}$
(b) $\frac{m_{1} m_{2}}{m_{1}+m_{2}} \mathrm{~g}$
(c) $\left(m_{1}+m_{2}\right) g$
(d) $\mathrm{m}_{2} \mathrm{~g}$

Q 11. The potential energy U in joule of a particle of mass I kg moving in $x-y$ plane obeys the law $U=3 x+4 y$, where (x, y) are the co-ordinates of the particle in metre. If the particle is at rest at $(6,4)$ at time $t=0$ then
(a) the particle has constant acceleration
(b) the particle has zero acceleration
(c) the speed of particle when it crosses the y-axis is $10 \mathrm{~m} / \mathrm{s}$
(d) co-ordinates of particle at $t=1 \mathrm{~s}$ are $(4.5,2)$

Q 12. A single conservative force acts on a body of mass 1 kg that moves along the x -axis. The potential energy $U(x)$ is given by $U(x)=20+(x-2)^{2}$ where x is in meters. At $x=5.0 \mathrm{~m}$ the particle has a kinetic energy of 20 J then -

Column-I

(A) minimum value
of x in meters
(B) maximum value of x in meters
(C) maximum potential energy in joules
(D) maximum kinetic Energy in joules

Column-II

(P) 29
(Q) 7.38
(R) 49
(S) -3.38

Q 13. A chain of length ' L ' and mass ' M ' is placed on a smooth surface. The length $\mathrm{BA}=\mathrm{L}-\mathrm{b}$. When the end A reaches B , the veloeity of the chain is
(a) $\sqrt{g \sin \theta(L-b)}$
(b) $\sqrt{g \sin \theta \frac{\left(L^{2}-b^{2}\right)}{L}}$
(c) $\sqrt{g \sin \theta \frac{(L-b)^{2}}{L}}$
(d) $\sqrt{g \sin \theta \frac{\left(L^{2}+b^{2}\right)}{L}}$

Answer Key

Q. 1 a	Q. 2 c	Q. $3 \mathrm{a}, \mathrm{b}, \mathrm{c}$	Q. 4 a, d	Q. 5 a
Q. 6 b, c	Q. $7 \mathrm{a}, \mathrm{b}, \mathrm{c}$	Q. 8 a	Q. 9 a	Q. 10 c
Q. 11 a, c, d		Q. 13 b		

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP-3 WEP: Conservative \& Non Conservative Forces, Potential Energy, Law of Conservation of Energy
By Physicsaholics Team

Solution:1

$$
\begin{array}{ll}
& U=K x^{2} \\
\Rightarrow & \frac{d U}{d x}=2 k x \\
\Rightarrow & F=-2 k x x
\end{array}
$$

To just lift B

$$
K x=M g \Rightarrow x=\frac{M g}{K}
$$

by Conservation of machenical energy \rightarrow loss in gravitational 9 E $=$ gain in spragighergy

$$
\begin{aligned}
& m=\frac{1}{2} k x^{2} \\
& \Rightarrow x=\frac{1}{2 n g}=\frac{m g}{k} \\
& \Rightarrow d=\frac{M}{2}
\end{aligned}
$$

Ans (c)

Solution:3
Kinetic Energy $=\frac{1}{2} m v^{2} \Rightarrow V$ is frame dependent therefore K.E is frame dependent
work done by a force $=\vec{F} \cdot \overrightarrow{O r} \Rightarrow(\overrightarrow{\Delta Y})$ is frame dependent Therefore work done by force is frame dependent.
Potential energy deperhas on our choice of reference position.

$$
\operatorname{ANs}(a, b, c)
$$

Solution: 4
Work done by Conservative force doess not depend on path of motion. It depends on initial \&efinal points only.
\Rightarrow Work done 1 by conservative force In one round is equalota work dona in zero dixplacement means zero.
$\operatorname{Ans}(a, d)$

Solution: Initial length of spring $=$ natural length - Compression $^{\text {n }}$
At natural length position $=$
block will leave contact with spring \& move alone.
by Conservation of machenical
 energy \rightarrow

Gain in G.P.E loss tin spring P.E.

$$
\begin{aligned}
& 5 g \times \sin 30 \\
&=\frac{1}{2} \times 300 \times 2^{2} \\
& x=24
\end{aligned}
$$

but length of inclined plane is only 6 m .
\Rightarrow block will start projectile motion from topmost point of inclined plans.
by Conservation of machenical

$$
\begin{aligned}
& \begin{array}{l}
\text { energy } \rightarrow \\
\frac{1}{2} \times 300 \times 2^{2}
\end{array}=5 \times 10 \times(6-2) 51130 \\
& 600=100+\frac{5}{2} \times 5 V_{0}^{2} \\
& \frac{5}{2} V_{0}^{2}=500 \\
& V_{0}^{2}=200
\end{aligned}
$$

Maximum Height of block

$$
\begin{aligned}
H & =6 \sin 30+\frac{V_{0}^{2} \sin ^{2} 30}{2 g} \\
& =6 \times \frac{1}{2}+200 \times 1 / 4 \\
& =3+25 \\
& =55 \mathrm{~s}=
\end{aligned}
$$

Ans (a)

Solution: 6

$$
\begin{aligned}
& F+V_{l} \\
\Rightarrow & -\frac{d U}{d x}=+v_{s} \\
\Rightarrow & \quad \frac{d U}{d x}=-V_{l}
\end{aligned}
$$

$\Rightarrow \quad U$ is decreasing on hacreasing 25
Similarly $F=-v e \Rightarrow$ Ghareasing on increasing x.
x_{1} to $x_{2} \xrightarrow{ }$ is dhereasing $\Rightarrow K E$ is decreasing
x_{2} to $x_{3} \rightarrow$ Is decreasing \Rightarrow, s increasing
x_{3} to $x_{4} \rightarrow V N_{1}$,
Ans.b,c

Solution:7
(a) At maximum extension in sporing, $V=0$.
by Conservation of machenical energy

$$
\begin{aligned}
& 2 M g X_{\text {max }}=\frac{1}{2} K x_{\text {max }}^{2} \\
& \Rightarrow \quad x_{\text {max }}=\frac{4 M_{y}}{k}
\end{aligned}
$$

(b) maximum Kinetic energy \Rightarrow maximum speed

$$
\Rightarrow \frac{d v}{d t}=0 \Rightarrow a=0 \Rightarrow F_{\text {net }}=0
$$

When speed is maximum

$$
\begin{aligned}
k x_{1} & =2 \mathrm{mg} \\
x_{1} & =2 \mathrm{mg} / \mathrm{K}
\end{aligned}
$$

by Conservation of machenical energy

$$
\begin{aligned}
& 2 m_{g x_{1}}=\frac{1}{2} k x^{2}+K E_{\text {max }} \\
& \Rightarrow \quad K E_{\max }=2 M_{g} \times 2 m g=\frac{1}{2} k \frac{4 m^{2} g^{2}}{k^{2}} \\
& =\frac{2 M m^{2} g^{2}}{k}
\end{aligned}
$$

$$
\underset{\substack{\text { equilibrium } \\ \text { position }}}{\downarrow^{x_{1}}}
$$

(c) Maximum energy stored in spring

$$
\begin{aligned}
& \text { Maximum energy stored in spring } \\
& =\frac{1}{2} K X_{\text {max }}^{2}=\frac{1}{2} K\left(\frac{4 M y}{K}\right)^{2}=\frac{8 M^{2} g^{2}}{K} \\
& =4 \times \text { maximum Kinetic Energy }
\end{aligned}
$$

(d) P.E of sporing at maximum Kineticenergy

$$
=\frac{1}{2} k x_{1}^{2} \Leftrightarrow \frac{k}{2} x \frac{4 m^{2} g^{2}}{k^{2}}=\frac{2 m^{2} g^{2}}{k}
$$

$$
\operatorname{ANS}(a, b, c)
$$

Solution: 8

by Conservation of amactatnical energy \rightarrow

$$
0+m g h=\frac{1}{2} m v^{2}+0
$$

RE $=\operatorname{mgh} \rightarrow$ independent of 0 .
Ans (a)
by Using work energy theorem

$$
\begin{aligned}
& \Rightarrow-10+W_{c 0}=\frac{1}{2} \times 2\left(33^{2}-5^{2}\right)=-1(\\
& \begin{array}{ll}
\Rightarrow & D \sqrt{\sqrt{50}}=-6 \mathrm{~J} \\
\Rightarrow U & =-W_{80}=+6 \mathrm{~J}
\end{array} \\
& \text { Ans(a) }
\end{aligned}
$$

Solution:10
To just lift lower block

$$
K x_{1}=m_{2} y \Rightarrow x_{1}=\frac{m_{2} y}{k}
$$

by Conservation of machenical sexily \rightarrow

$$
\begin{gathered}
-m_{1} g x_{0}+0+\frac{1}{2} k x_{0}^{2}=A m_{g}+6+\frac{1}{2} k x x_{1} \\
\frac{1}{2} k x_{0} g x_{1}^{2}=m_{1} g\left(x_{1}+x_{0}\right) \\
\frac{k}{2}\left(x_{0}-x_{1}\right) m_{1} g \\
x_{0}=x_{1}+\frac{2 m_{1} g}{k}=\frac{m_{2} g}{k}+\frac{2 m_{1} g}{k}
\end{gathered}
$$

At initial position

Solution: 11

$$
\begin{aligned}
& U=3 x+4 y \\
\Rightarrow & \vec{F}=-\frac{\partial U}{\partial x} \hat{\imath}-\frac{\partial U}{\partial y} \hat{\jmath} \\
& \vec{F}=-3 \hat{\imath}-4 \hat{\jmath} \\
\Rightarrow & \vec{a}=\frac{F}{m}=-3 \hat{\imath}-4 \hat{p}
\end{aligned}
$$

When partisis Posses y axis, $x=0, \Delta x=6 \mathrm{~m}$ along $(-x)$ axis. for motion along x axis $\rightarrow \vec{\rightarrow}$

$$
\begin{aligned}
& x=u t+\frac{1}{2 a+t^{2}} \Rightarrow 6=\frac{1}{2} \times 3 t^{2} \Rightarrow t=2 \mathrm{sec}_{2} \\
& \text { at } t=2, \vec{V}=\vec{u}+\vec{a} t=0+(-3 \hat{\imath}-4 \hat{\jmath}) \times 2 \Rightarrow V=10 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\Delta r}=\vec{u} t+\frac{1}{2} \vec{a} t^{2} \\
\Rightarrow & \vec{\gamma}-(6 \hat{\imath}+4 \hat{\jmath})=0+\frac{1}{2}(-3 \hat{\imath}-4 \hat{\jmath}) \times 1^{2} \\
\Rightarrow & \vec{\gamma}-(6 \hat{\imath}+4 \hat{\jmath})=a+t=1 \\
\Rightarrow & \quad \operatorname{Ans}(a, c, d)
\end{aligned}
$$

Solution: 12 At $x=5, U=20+(5-2)^{2}=29 \mathrm{~J}$

$$
K E=20 \mathrm{~J}
$$

\Rightarrow Total Machenical energy $=29+20=49 \mathrm{~J}$
for minimum value of $\sqrt{x}, \frac{d x}{d t} F 0 \Rightarrow v=0$

$$
\begin{aligned}
& \Rightarrow K E=0 \quad P E=49 J \\
& \left.\Rightarrow 20+(x-2)^{3}=4\right)^{2} \\
& \Rightarrow \sqrt{2-2}= \pm \sqrt{29} \\
& \Rightarrow \quad 0 \quad x_{\text {max }}=2+\sqrt{29}, x_{\min }=2-\sqrt{29} \\
& =7.38 \mathrm{~m} \quad=-3.38 \mathrm{~m}
\end{aligned}
$$

$$
T M E=49 \mathrm{~J} \quad \& \quad U=20+(x-2)^{2}
$$

for maximum $K E$, $P E$ should besminimums

$$
\begin{aligned}
& U_{\text {min }}=20 \mathrm{~J} \text { at } x=2 \\
\Rightarrow & K_{\text {max }}=49=20 \Rightarrow 29 \mathrm{~J}
\end{aligned}
$$

Maximum Potential energy \Rightarrow minimum KE.
KE is minimum 3×80 at extremes.

$$
\Rightarrow \quad U_{\text {max }}=49 J . \quad \text { Ans. } A(s) B B(r) D(p)
$$

Only length $(t-b)$ Lass Changed its position mass of length $L-b=\frac{M}{1}((f-b)$

$$
\begin{aligned}
\text { Losing n } R t & \left.=\frac{M}{b}(L b) g d\left(b+\frac{L-b}{2}\right) \sin \theta\right] \\
& =\frac{M g}{2 L}\left(l^{2}-b^{2}\right) \sin \theta
\end{aligned}
$$

by Conservation of machenical energy \rightarrow

$$
\begin{aligned}
& \text { losgin PE }=\text { gain in KE } \\
\Rightarrow & \frac{M g}{2 L}\left(L^{2}-b^{2}\right) \sin \theta=\frac{1}{2} M V \\
\Rightarrow &
\end{aligned}
$$

Ans(b)

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/75
https://youtu.be/AVqpDrsoRSo
https://physicsaholics.com/note/notesDetalis/77

Chalo Nikis

